Equlibrium Questions 2016

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1.

When 30.0 mL of $0.10 \mathrm{M} \mathrm{AgNO}_{3}$ is added to 30.0 mL of 0.10 M NaCl , aqueous NaNO_{3} and solid AgCl are formed. How many moles of solid AgCl is produced?
a. 0.003
b. 0.03
c. 0.006
d. 0.06
2. This sample contains the least number of particles.
a. $\quad 1.0 \mathrm{~L}$ of Ar at STP
b. 1.0 L of H_{2} at STP
c. 1.0 L of Ar at 25 C and 760 mmHg
d. 1.0 L of H_{2} at 0 C and 900 mmHg

A 60.0 g sample of CaCO_{3} is heated to 950 K in a 1.00 L evacuated container, where it reacts according to the following equation:

$$
\mathrm{CaCO} 3(\mathrm{~s}) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)+\text { Energy (reaction is exothermic) }
$$

The pressure in the vessel begins to increase as the reaction proceeds but settles at .05 ATM.
\qquad 3. Which of the following would be the Kp expression for the reaction listed?
a.

c.
$\mathrm{p}\left(\mathrm{CO}_{2}\right)$
$\overline{\mathrm{p}}\left(\mathrm{CaCO}_{3}\right) \mathrm{p}(\mathrm{CaO})$
b.

$$
\mathrm{Kc}=\frac{\left[\mathrm{CO}_{2}\right][\mathrm{CaO}]}{\left[\mathrm{CaCO}_{3}\right]}
$$

d.
$\mathrm{Kp}=\mathrm{p}\left(\mathrm{CO}_{2}\right)$
4. What is the value of Kp at the established equilibrium described?
a. . 05
c. . 01
b. . 005
d. . 001
\qquad 5. The volume of the container is reduced in half, at that moment, what is the reaction quotient?
a. . 05
c. 0.1
b. . 025
d. 0.01
\qquad 6. The volume of the container is reduced in half and allowed to return to equilibrium. The new equilibrium constant will be
a. larger
c. same as original prior to compression
b. smaller
d. more information would be needed.
\qquad 7. The volume of the container is reduced in half and allowed to return to equilibrium. What will be the new pressure in the container?
a. pressure will be .05
b. Pressure will be 0.1
c. Slightly less then 0.08
d. Slightly more then 0.12
\qquad 8.

After equilibrium is attained, the pressure of $\mathrm{CO}_{2}(\mathrm{~g})$ is .05 atm . When the experiment is repeated using $120.0 \mathrm{~g} \mathrm{CaCO}_{3}$, what is the equilibrium pressure P ?
a. $.025 \mathrm{~mm} \mathrm{Hg}<\mathrm{P}<.05$
b. $.05<\mathrm{P}<0.1$
c. $P=.05$
d. $P=0.1$
\qquad 9. I would like to reduce the pressure in the container. Which of the following would help accomplish this
a. Lower the temperature
c. K is constant so it can not change
b. raise the temperature
d. take out some of the reactant.
$\operatorname{IBr}(g)$ is in equilibrium with $\mathrm{I}_{2}(g)$ and $\mathrm{Br}_{2}(g)$ at $150{ }^{\circ} \mathrm{C}$:

$$
2 \mathrm{IBr}(\mathrm{~g}) \rightleftarrows \mathrm{I}_{2}(g)+\mathrm{Br}_{2}(g) K=8.50 \mathrm{E}-3
$$

10. This reaction is considered
a. reactant favored
c. Goes to completion
b. product favored
d. The extent of the reaction is high
11. Initially, a closed vessel at $150^{\circ} \mathrm{C}$ has a partial pressure of IBr of 0.350 ATM and partial pressures of I_{2} and Br_{2} are each 0.350 ATM. What is the current reaction quotient.
a. $\quad 1.0 \mathrm{E}-2$
b. 1
c. 100
d. $.350^{2}$
12. As this reaction approaches equilibrium how will the reaction behave?
a. shift to products
c. this reaction is at equilibrium
b. shift to reactants
d. reaction has already finished.

13. The concentration of the unknown acid is
a. 0.6
c. . 12
b. 0.066
d. 1.2
14. The Ka value for the unknown acid is
a. infinitely small
c. big
b. infinitely large
d. small
15. The unknown is a
a. strong acid
c. strong base
b. weak acid
d. weak base
16. The graph is showing a starting pH of approximately $1 \ldots$ The actual pH data point when starting is
a. exactly 1
c. slightly more then 1
b. slightly less then 1
d. not determinable with information provided.

17.

At which point does this beaker represent?
a. A
c. C
b. B
d. This is not the acid represented.

18.

At which point does this beaker represent?
a. A
c. C
b. B
d. This picture does not exist
19. At which point would this acid be considered a buffer?
a. A the most acid is available to buffer
b. B, strong acids and bases are available.
c. C, most effective at equivalence
d. none, the weak acid and conjugate weak base never exist.
20. A container has a liquid poured into it and sealed. The pressure is monitored over a period of time. Which of the following graphs shows the correct representation of the vapor pressure in the enclosed container over time.

a. A
c. C
b. B
d. D

Equlibrium Questions 2016

Answer Section

MULTIPLE CHOICE

1. ANS: A
2. ANS: D
3. ANS: D
4. ANS: A
5. ANS: C
6. ANS: C
7. ANS: A
8. ANS: C
9. ANS: B
10. ANS: A
11. ANS: B
12. ANS: B
13. ANS: B
14. ANS: B
15. ANS: A
16. ANS: C
17. ANS: D
18. ANS: C
19. ANS: D
20. ANS: D

PTS: 1

